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Abstract
An open conjecture of Erdős and Moser is that the only solution of the Diophantine
equation in the title is the trivial solution 1+2 = 3. Reducing the equation modulo
k and k2, we give necessary and sufficient conditions on solutions to the resulting
congruence and supercongruence. A corollary is a new proof of Moser’s result that
the conjecture is true for odd exponents n. The proofs use divisibility properties
of power sums as well as Lerch’s relation between Fermat and Wilson quotients.
Examples are provided using primary pseudoperfect numbers.

1. Introduction

Around ����, Erdős and Moser made the following conjecture.

Conjecture 1. (Erdős-Moser) The only solution of the Diophantine equation

1n + 2n + · · · + kn = (k + 1)n (1)

is the trivial solution 1 + 2 = 3.

Using prime number theory, Moser [10] proved the statement for odd exponents n.
By considering (1) modulo k, k+2, 2k+1, and 2k+3, and combining the information
so obtained, Moser also showed that if a solution with even n exists, then both n
and k must exceed 10106

. This bound was later improved by several authors—the
current record is 10109

, obtained by Gallot, Moree, and Zudilin [3] using continued
fractions. On the other hand, it has not even been proved that the Erdős-Moser

equation (1) has only finitely many solutions. For surveys of work on this and
related problems, see Butske, Jaje, and Mayernik [1], Guy [4, D7], and Moree [8, 9].
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The next section gives necessary and sufficient conditions on solutions of the
congruence

1n + 2n + · · · + kn ≡ (k + 1)n (mod k) (2)

in Theorem 3, which was proved implicitly by Moser in [10]. An application is a
new proof of his result that Conjecture 1 is true for odd exponents n. We also
connect Theorem 3 with primary pseudoperfect numbers.

In Section 3, we extend the theorem by giving necessary and sufficient conditions
on solutions to the supercongruence modulo a square

1n + 2n + · · · + kn ≡ (k + 1)n (mod k2) (3)

in Theorem 10. Here the conditions involve the Wilson quotient, and the proof uses
Lerch’s formula relating Fermat and Wilson quotients.

In the final section, we consider two supercongruences modulo a cube, and make
a conjecture about one of them.

2. Congruences

We will use a well-known congruence for power sums.

Lemma 2. If n is a positive integer and p is a prime, then

1n + 2n + · · · + pn ≡
�
−1 (mod p), (p− 1) | n,

0 (mod p), (p− 1) � n.

Proof. See Hardy and Wright [5, Theorem 119] for the standard proof using primi-
tive roots, or MacMillan and Sondow [7] for a recent elementary proof.

We now give necessary and sufficient conditions on solutions to (2).

Theorem 3. Given positive integers n and k, the congruence

1n + 2n + · · · + kn ≡ (k + 1)n (mod k) (4)

holds if and only if prime p | k implies

(i) n ≡ 0 (mod (p− 1)), and

(ii)
k

p
+ 1 ≡ 0 (mod p).

In that case, k is square-free, and if n is odd, then k = 1 or 2.
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Proof. Note first that if n, k and p are any positive integers with p | k, then

Sn(k) := 1n + 2n + · · · + kn =
k/p�

h=1

p�

j=1

((h− 1)p + j)n ≡ k

p
Sn(p) (mod p). (5)

Now assume (i) and (ii) hold when prime p | k. Then, using Lemma 2, both
Sn(p) and k/p are congruent to −1 modulo p, and (5) gives Sn(k) ≡ 1 (mod p).
Thus, as (ii) implies k is square-free, k is a product of distinct primes each of which
divides Sn(k)− 1. It follows that Sn(k) ≡ 1 (mod k), implying (4).

Conversely, assume that (4) holds, so that Sn(k) ≡ 1 (mod k). If prime p | k,
then (5) gives (k/p)Sn(p) ≡ 1 (mod p), and so Sn(p) �≡ 0 (mod p). Now Lemma 2
yields both (p− 1) | n, proving (i), and Sn(p) ≡ −1 (mod p), implying (ii).

If n is odd, then by (i) no odd prime divides k. As k is square-free, k = 1
or 2.

Here is an easy consequence, due to Moser.

Corollary 4. The only solution of the Erdős-Moser equation with odd exponent n
is 1 + 2 = 3.

Proof. Given a solution with n odd, Theorem 3 implies k = 1 or 2. But k = 1 is
clearly impossible, and k = 2 evidently forces n = 1.

Solutions to (4) are related to the notion of a primary pseudoperfect number,
defined by Butske, Jaje, and Mayernik [1] as an integer K > 1 that satisfies the
Egyptian fraction equation

1
K

+
�

p|K

1
p

= 1,

where the summation is over all primes p dividing K. In particular, K is square-
free. By computation, they found all such numbers K with eight or fewer prime
factors (see [1, Table 1]). The first few are K = 2, 6, 42, 1806, 47058, . . . .

Here is the connection between such numbers and solutions of the congruence (4).
(Recall that for real numbers, x ≡ y (mod 1) means that x− y is an integer.)

Corollary 5. The positive integers n and k satisfy the congruence (4) if and only if

n is divisible by the least common multiple LCM{p−1 : prime p | k} and k satisfies

the Egyptian fraction congruence

1
k

+
�

p|k

1
p
≡ 1 (mod 1). (6)

In particular, every primary pseudoperfect number K gives a solution k = K to (4),
for some exponent n.
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Proof. Condition (6) is equivalent to the congruence

1 +
�

p|k

k

p
≡ 0 (mod k), (7)

which in turn is equivalent to condition (ii) in Theorem 3, since each implies k is
square-free. The theorem now implies the corollary.

Example 6. Since 47058 = 2 · 3 · 11 · 23 · 31 and

1
47058

+
1
2

+
1
3

+
1
11

+
1
23

+
1
31

= 1,

we see by computing LCM(1, 2, 10, 22, 30) = 330 that one solution of (4) is

1330 + 2330 + · · · + 47058330 ≡ 47059330 (mod 47058).

Examples 11 and 14 give a fortiori two other cases of the congruence (4) with
k = K a primary pseudoperfect number. We explore this relation more thoroughly
in a paper in preparation.

3. Two Supercongruences Modulo a Square

If the conditions in Theorem 3 are satisfied, the following corollary shows that the
congruence (5) can be replaced with a “supercongruence.”

Corollary 7. If 1n + 2n + · · · + kn ≡ (k + 1)n (mod k) and prime p | k, then

1n + 2n + · · · + kn ≡ k

p
(1n + 2n + · · · + pn) (mod p2). (8)

Proof. By Theorem 3, it suffices to prove the more general statement that, if prime
p | k and (p − 1) | n, and if either k = 2 or n is even, then (8) holds. Set a = k/p
in the equation (5). Expanding and summing, we see that

Sn(k) ≡ aSn(p) +
1
2

a(a− 1)npSn−1(p) (mod p2).

If p > 2, then (p− 1) | n implies (p− 1) � (n− 1), and Lemma 2 gives p | Sn−1(p).
In case p = 2, either a = k/2 = 1 or 2 | n, and each implies 2 | (1/2)a(a− 1)n. In
all cases, (8) follows.

For an extension of Theorem 3 itself to a supercongruence, we need a definition
and a lemma.



INTEGERS: 11 (2011) 5

Definition 8. By Fermat’s and Wilson’s theorems, for any prime p the Fermat

quotient

qp(j) :=
jp−1 − 1

p
(p � j), (9)

and the Wilson quotient

wp :=
(p− 1)! + 1

p

are integers.

Lemma 9. (Lerch [6]) If p is an odd prime, then the Fermat and Wilson quotients

are related by Lerch’s formula

p−1�

j=1

qp(j) ≡ wp (mod p).

Proof. Given a and b with p � ab, set j = ab in (9). Substituting ap−1 = pqp(a) + 1
and bp−1 = pqp(b) + 1, we deduce Eisenstein’s relation [2]

qp(ab) ≡ qp(a) + qp(b) (mod p),

which implies

qp((p− 1)!) ≡
p−1�

j=1

qp(j) (mod p).

On the other hand, setting j = (p − 1)! = pwp − 1 in (9) and expanding leads, as
p− 1 is even, to qp((p− 1)!) ≡ wp (mod p). This proves the lemma.

We now give necessary and sufficient conditions on solutions to (3).

Theorem 10. For n = 1, the supercongruence

1n + 2n + · · · + kn ≡ (k + 1)n (mod k2) (10)

holds if and only if k = 1 or 2. For n ≥ 3 odd, (10) holds if and only if k = 1.
Finally, for n ≥ 2 even, (10) holds if and only if prime p | k implies

(i) n ≡ 0 (mod (p− 1)), and

(ii)
k

p
+ 1 ≡ p (n(wp + 1)− 1) (mod p2).
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Proof. To prove the first two statements, use Theorem 3 together with the fact that
the congruences 1n +2n ≡ 1 (mod 4) and 3n ≡ (−1)n ≡ −1 (mod 4) all hold when
n ≥ 3 is odd.

Now assume n ≥ 2 is even. Let p denote a prime. By Theorem 3, we may assume
that (i) holds if p | k, and that k is square-free. It follows that the supercongruence
(10) is equivalent to the system

Sn(k) ≡ (k + 1)n (mod p2), p | k.

Corollary 7 and expansion of (k + 1)n allow us to write the system as

k

p
Sn(p) ≡ 1 + nk (mod p2), p | k.

Since n is at least 2 and (p− 1) | n, we have

Sn(p) ≡ Sn(p− 1) (mod p2)

=
p−1�

j=1

(jp−1)n/(p−1).

Substituting jp−1 = 1 + pqp(j) and expanding, the result is

Sn(p) ≡
p−1�

j=1

�
1 +

n

p− 1
pqp(j)

�
≡ p− 1− np

p−1�

j=1

qp(j) (mod p2), (11)

since n/(p− 1) ≡ −n (mod p). Now Lerch’s formula (if p is odd), together with the
equality q2(1) = 0 and the evenness of n (if p = 2), yield

Sn(p) ≡ p− 1− npwp (mod p2).

Summarizing, the supercongruence (10) is equivalent to the system

k

p
(p− 1− npwp) ≡ 1 + nk (mod p2), p | k.

It in turn can be written as
k

p
+ 1 ≡ −k

�
n(wp + 1)− 1

�
(mod p2), p | k. (12)

On the right-hand side, we substitute k ≡ −p (mod p2) (deduced from (12) multi-
plied by p), and arrive at (ii). This completes the proof.

Example 11. Given any solution of (10) with n > 1 and k a primary pseudoperfect
number having eight or fewer prime factors, one can show that k = 2 or 42 (see
Corollary 5 in [11], an early version of the present paper). Example 14 illustrates
the case k = 2. For k = 42, the simplest example is

112 + 212 + · · · + 4212 ≡ 4312 (mod 422).
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4. Two Supercongruences Modulo a Cube

In light of the extension of Theorem 3 to Theorem 10, it is natural to ask whether
Corollary 7 extends as well. Numerical experiments suggest that it does.

Conjecture 12. If 1n + 2n + · · · + kn ≡ (k + 1)n (mod k2) and prime p | k, then

1n + 2n + · · · + kn ≡ k

p
(1n + 2n + · · · + pn) (mod p3).

Example 13. For p = 2, 3, and 7, one can compute that

112 + 212 + · · · + 4212 ≡ 42
p

�
112 + 212 + · · · + p12

�
(mod p3).

In fact, for p = 2, 3, and 7 it appears that Sn(42) ≡ (42/p)Sn(p) (mod p3) holds
true not only when n ≡ 12 (mod 42), but indeed for all n ≡ 0 (mod 6). One reason
may be that, for p = 7 (but not for p = 2 or 3), apparently 6 | n implies p2 | Sn−1(p).
(Compare p | Sn−1(p) in the proof of Corollary 7.)

Just as Corollary 7 helped in the proof of Theorem 10, a proof of Conjecture 12
might help in extending Theorem 10 to necessary and sufficient conditions on solu-
tions to the supercongruence

1n + 2n + · · · + kn ≡ (k + 1)n (mod k3).

Example 14. Given any solution with n > 1 and k a primary pseudoperfect number
having eight or fewer prime factors, one can show that k = 2. The smallest case is

14 + 24 ≡ 34 (mod 23).

More generally, for any positive integers n and d we have

1n + 2n ≡ 3n (mod 2d), if 2d−1 | n.
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